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Abstract  

The terminal ballistic performance of high-velocity, low length-to-diameter 
(L/D) ratio projectiles impacting steel targets has been a topic of considerable 
interest in penetration mechanics to evaluate the efficacy of segmented 
projectiles. A computational study has been conducted to examine the 
penetration performance of multiple (i.e., three), axially offset, disk-shaped 
projectiles impacting semi-infinite rolled homogeneous armor (RHA). A 
constant 3.25 projectile diameter separation distance between each disk-shaped 
projectile was maintained for the impact conditions modeled in this study. The 
three-dimensional (3-D) simulations suggest that the total depth of penetration 
into steel is not degraded for disk offsets less than 0.5 projectile diameters based 
on the range of disk offsets modeled in the study. 
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1.   Introduction 

The penetration performance of high-density, low length-to-diameter (L/D) ratio 
projectiles impacting steel targets has been a topic of considerable interest in 
penetration mechanics due to the speculated performance of a segmented rod 
projectile. This has been spurred by the observation that normalized penetration 
performance, i.e., penetration per unit length (P/L), increases as L/D decreases, 
provided that the impact velocity is relatively high. Computational and 
experimental research to date has focused on penetrators shaped as either 
spheres or right-circular cylinders, with an L/D of 1 or slightly greater [1-18]. 
De Rosset and Sherrick [19] modeled segmented rod performance at ordnance 
velocity for high-density tungsten alloy segments with an L/D of 1. They 
observed that multiple segment rod performance was less than that predicted by 
simply multiplying single segment performance by the total number of segments 
due to interactions with residual segment material in the penetration cavity. 

Recently, computational and experimental studies have focused on 
characterizing and understanding the penetration mechanics of high-density 
metallic projectiles with an L/D ratio of less than 1 [20-22]. Herberte [23] noted a 
dramatic increase in P/L for steel disks with an L/D ratio of 1/30, impacting 
aluminum targets at 2 km/s when compared to penetrators with considerably 
greater L/D. Orphal and Franzen [24] also reported a significant increase in P/L 
as projectile L/D was reduced from 1 to 1/8 for tungsten, tungsten alloy, and 
tantalum alloy projectiles impacting steel targets at striking velocities between 
1.5 km/s and 7.5 km/s. A thorough review of the fundamentals of penetration 
and perforation of solids and their application to practical problems has been 
prepared by Goldsmith [25], Johnson [26], Backman and Goldsmith [27], Zukas 
et al. [28], and Zukas [29]. 

This report summarizes a numerical study to examine the penetration 
performance of multiple (i.e., three) tungsten heavy alloy (WHA), axially offset, 
disk-shaped projectiles impacting semi-infinite rolled homogeneous armor 
(RHA) at a striking velocity of 2.6 km/s. The separation distance between each 
disk-shaped projectile is 3.25 projectile diameters. Segment offsets between 
0 and 1 projectile diameters were modeled in the study. The impact dynamics of 
multiple, axially offset, disk-shaped projectiles impacting a steel target are 
discussed in the sections that follow. 



2.   Numerical Model 

The numerical study was conducted with the Eulerian wave propagation code 
CTH [30]. A single program multiple data (SPMD) paradigm with explicit 
message passing between computational subdomains was used to map the 
global computational domain onto a scalable architecture [31]. CTH is a family 
of computer programs for modeling solid dynamics problems involving shock 
wave propagation, multiple materials, and large deformations in one, two, and 
three dimensions. CTH employs a two-step solution scheme: a Lagrangian step 
followed by a remap step. The conservation equations are replaced by explicit 
finite volume equations that are solved in the Lagrangian step. The remap step 
uses operating splitting techniques to replace multidimensional equations with a 
set of one-dimensional (1-D) equations. The remap or advection step is based on 
a second order accurate van Leer scheme. To nvinimize material dispersion, a 
high-resolution material interface tracker is available. Both analytical and 
tabular equations of state are available to model the hydrodynamic behavior of 
materials. Models for elastic-plastic behavior and high-explosive detonation are 
also available. 

The CTH simulations reported herein used a linear-Hugoniot shock-particle 
velocity equation of state to model the hydrodynamic behavior of the materials. 
An elastic perfectly plastic material model was used for WHA and RHA, with 
dynamic yield strengths of 19.3 kilobar (kbar) and 7.0 kbar, respectively [20]. The 
simulations used a three-dimensional (3-D) Cartesian coordinate system. The 
multiple material temperatures and pressures thermodynamic model was used 
to calculate separate temperatures and pressures for materials in multimaterial 
cells. The Sandia Modified Young's Reconstruction Algorithm (SMYRA) [32] 
was used to track material interfaces and rninimize material dispersion in 
multimaterial cells. The March 1999 release of the CTH code was used to 
conduct the simulations discussed in this report. The computational mesh is 
composed of 0.4-mm cubic cells in the disk-target interaction region, with a 
geometric cell expansion to extend the mesh to the boundaries of the 
computational domain. The mesh is composed of a total of 6,346,800 cells. The 
0.4-mm cubic cell subgrid region spanned from -6.4 to 2.4 cm in the 
X-coordinate direction, 0.0 to 3.2 cm in the Y-coordinate direction, and -3.2 to 
2.04 cm in the Z-coordinate direction. The X-Z plane is modeled as a symmetry 
boundary to rninimize the size of the computational mesh. To further reduce the 
number of required computational cells, the CTH data initialization and 
modification (DIATOM) input set was used to insert the second and third disk- 
shaped penetrators into the simulation at user-specified times, 17.692 us and 
35.385 us, respectively, to accurately model the separation distance between 



individual disk-shaped penetrators. The DIATOM input set permits time- 
dependent insertion of material during the course of a calculation, i.e., virtual 
objects. 

The geometry of each disk-shaped penetrator is constant, with a diameter of 
16 mm and a thickness of 2 mm. The L/D of each disk is 1/8. Each disk-shaped 
penetrator was assigned an initial impact velocity of 2.6 km/s in the negative 
Z-coordinate direction. The separation distance between individual disks is 
3.25 projectile diameters. This separation distance is sufficient to allow each disk 
to complete its contribution to the overall penetration before the next disk 
impacts the target. The target was modeled as a semi-infinite block of RHA. 
Figure 1 shows a schematic of the impact conditions examined in this study. 

V = 2.6 km/s Offset, h 

Figure 1. Multiple, axially offset, disk-shaped penetrator impact geometry. 

3.   Penetration of Single and Axially Aligned, 
Multiple Disks 

Baseline simulations were conducted to assess the overall influence of axial offset 
on the penetration of multiple, disk-shaped penetrators. The first baseline 
simulation modeled the impact of a single disk-shaped penetrator. The single 
disk-shaped penetrator geometry was identical to the individual disk geometries 
modeled in the offset simulations, i.e., L/D = 1/8, and D = 16 mm. The single 
disk impact was modeled using the same 3-D computational domain and mesh 
resolution as established for the offset simulations. In addition, the same target 
and penetrator material properties were defined for the single disk impact 
simulation. The calculation was run for a simulated time of 50 us. The predicted 
penetration channel for the single disk impact is shown in Figure 2. 



Figure 2. Penetration of 2.6-km/s single disk impact into semi-infinite RHA, at 50 |is. 

Figure 3 shows the time history for two Lagrangian tracer particles initially 
located along the centerline of the disk, with Tracer 1 positioned on the impact 
face of the disk and Tracer 2 positioned on the rear surface of the disk. The 
predicted final depth of penetration at 50 us is 10.8 mm or a predicted 
normalized penetration, P/L, ratio of 5.4. Figure 3 indicates that the single disk 
impact achieves a maximum penetration of 11.2 mm at about 25 us. 
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Figure 3. Tracer position history for single disk impact. 

Figure 4 shows the axial velocity histories for tracer particles positioned on the 
front and rear surfaces of the disk. The axial velocity initially reaches 0 at about 
25 us, followed by a short duration of rebound until all of the impact kinetic 
energy has been absorbed. This suggests that for a multiple disk impact event, 
the second disk should be staged to impact the target at about 20-25 us after the 
first disk impact in order to augment the axial momentum imparted to the target 
by the first disk. This corresponds to a disk-separation-to-projectile-diameter, 
S/D, ratio of 3.25-4.1 projectile diameters. Note that the time for an individual 
disk to traverse a separation distance of 5.2 cm is 20 (is. At 20 us, the single disk 
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Figure 4. Tracer velocity history for single disk impact. 

penetration is 10.7 mm, which corresponds to 95.5% of the predicted maximum 
depth of penetration and 99.1% of the predicted final depth of penetration. As a 
result, a normalized separation distance, S/D, of 3.25 projectile diameters was 
selected for the multiple disk impact simulations. 

A second baseline simulation modeled perfectly aligned (no offset), multiple 
disk-shaped penetrators impacting a semi-infinite RHA target at 2.6 km/s. 
Figure 5 shows the predicted penetration channel at 100 us. The penetration 
channel exhibits a scalloped penetration channel that corresponds to the impact 
of each disk-shaped penetrator. Some debris ejecta are noted along the 
centerline. Figure 6 shows the time history of a Lagrangian tracer particle 
initially located on the centerline, 0.2 mm below the target-impact face. The 
impact of each disk-shaped penetrator is clearly evident in Figure 6. The second 
disk impact occurs at about 25 (is, and the third disk impact occurs at about 
50 us. 

Figure 5. Penetration of perfectly aligned, multiple disk impact at 2.6 km/s. 
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Figure 6. Tracer position history for perfectly aligned, multiple disk impact. 

The second disk impacts the target after the first disk has penetrated 10.2 mm 
into the target or approximately 94% of the predicted final depth of penetration 
for the baseline single disk impact previously discussed. Impact of the second 
disk increases the depth of penetration to 19.1 mm. At 48.5 us, the third disk 
impacts the target, which contributes an additional 10 mm of penetration, 
resulting in a final predicted depth of penetration, along the centerline, of 
29.1 mm. Material plots at intermediate times for this multiple disk impact event 
indicate that the third disk interacts with debris ejecta, generated during the 
second disk impact, along the centerline prior to impacting the target. The 
penetration channel produced as a result of this interaction is slightly deeper 
(29.8 mm) at the channel side wall when compared to depth of penetration 
(29.1 mm) at the centerline (see Figure 5). In addition, the interaction of the 
second and third disks, with residual penetrator material at the bottom of the 
channel, results in a predicted depth of penetration that is less than that 
suggested by simple multiplication of the baseline single disk penetration 
(10.8 mm) by a factor of 3. 

4.   Penetration of Axially Offset Disks 

A set of 3-D CTH simulations was conducted to examine the penetration 
performance of multiple, axially offset, disk-shaped penetrators striking semi- 
infinite RHA targets. The study examined axial offsets between 0 (perfect 
alignment) and 1 projectile diameter. Each disk-shaped penetrator had an 
impact kinetic energy of 23.6 kj, yielding a total impact energy of 70.8 kj. The 
predicted maximum depth of penetration for each offset studied is presented in 



Table 1. Figure 7 shows the predicted penetration channels at 100 \is for axial 
offsets of 0.25D, 0.5D, 0.75D, and 1.0D. All of the penetration channels are 
asymmetric. Distinct penetration channels for each disk impact are observed in 
the penetration channels, with axial offsets of 0.75D, and 1.0D. Review of the 
penetration channel for offsets of 0.5D and below, shown in Figure 7, as well as 
intermediate material plots during the development of the penetration channel, 
exhibits interactions between the side walls of the penetration channel and the 
trailing offset disks. This side wall interaction deflects each trailing disk towards 
the centerline of the penetration channel produced by the impact of the first disk. 
For axial offsets less than 0.5D, more of the impact energy is absorbed in 
producing a deeper penetration channel rather than increasing the diameter of 
the penetration channel. 

Table 1. Penetration of multiple, axially offset, disk-shaped penetrators. 

Simulation Axial Offset 
(mm) 

Penetration 
(mm) 

Off 0 0 29.8 

Off_125 2 32.0 

Off_25 4 32.4 

Off_5 8 33.2 

Off_75 12 23.5 

Off_l 16 22.0 

Figure 7.    Penetration channels for axial offsets (a) 0.25D, (b) 0.5D, (c) 0.75D, and 
(d) 1.0D. 



The larger axial offsets (0.75D and greater) produce discrete penetration channels 
for each disk impact. At these offsets, there is no coupling of the impact energy 
to increase the depth of penetration. Effectively, a large portion of the impact 
energy is absorbed in producing a larger diameter penetration channel. 
Comparison of the predicted depth of penetration of axial offsets of 0.5D and 
0.75D (see Table 1) shows a 9.7 mm (29%) decrease in depth of penetration. 
Thus, axial offsets larger than 0.5D will significantly decrease penetration 
performance. This decrease in penetration performance can be seen in Figure 8, 
which summarizes the normalized depth of penetration as a function of axial 
offset. 

0    2   4   6    8   10  12  14 16  18 20 
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Figure 8.    Penetration of multiple, axially offset, disk-shaped penetrators into RHA 
at 2.6 km/s. 

5.   Conclusion 

The terminal ballistic performance of multiple, axially offset, high-velocity, low 
L/D ratio projectiles impacting semi-infinite RHA has been studied using 3-D 
continuum mechanics simulations. This numerical study investigated axial 
offsets between 0 (perfect alignment) and 1 projectile diameter. The impact 
scenarios modeled in this study suggest that the depth of penetration into steel is 
not degraded for axial offsets less than 0.5 projectile diameters. For the zero 
offset case, it was observed that as a result of interactions between the trailing 
disks and residual penetrator material at the bottom of the penetration channel, 
the predicted depth of penetration is less than that suggested by simple 
multiplication of the baseline single disk penetration by the number of disks 
impacting the target. 
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